GP for option pricing

As you probably know GP (Genetic Programming) is an extension of GA which rearranges algebraic or functional instruction trees to fit to a solution.


I had not thought of it previously, but could use such an approach with the right set of functional constructors to converge on an option pricing GP. Now if all we were trying to do was to replicate the Black / Scholes, CEV, or other gaussian distribution based model, would not be very interesting.

We know that the actual distribution are often non-gaussian. Could we produce a more accurate approximation of the hedging cost against a non-gaussian distribution (implying the true risk free price of the option) with GP?

Interestingly, Neural Networks are just special cases of a GP tree, so in the end GP is the most general approach to non-linear regression.

Advertisements

Leave a comment

Filed under genetic algorithms, pricing, statistics

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s